Analytics Engineer

TechNET IT
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Analytics Engineer (Microsoft Fabric)

Portfolio Analytics Engineer – Quantitative Risk & Pricing

Data Engineer

Data Engineer

Data Engineer

Azure Data Engineer - £500 - Hybrid

United Kingdom - London
Posted: 25/07/2024

Salary: £0.00to £500.00 per Day
ID: 34443_BH

Apply

ORAnalytics Engineer | 6-month contract initially | Hybrid role based in London
Our client is on a quest to modernize their data stack and expand their analytics engineering function. They are on the hunt for experienced Analytics Engineers enthusiastic about designing innovative solutions that balance bespoke in-house solutions with external tools, driving data governance, quality, and availability.
Responsibilities:You will bedeveloping robust data models within your domain, observing best practices and frameworks to improve data discoverability, accessibility, manipulation, and reporting. Serving as a data steward and owner of a decentralized data network, ensuring top-tier governance and maintaining comprehensive documentation across your domain's lineage. Partnering closely with the data engineering and ETL teams to translate technical requirements into non-technical outcomes and vice versa. Ensure consistent reporting by aligning stakeholders on definitions of metrics and dimensions within your domain. Drive the success of their self-service program by educating non-technical stakeholders on the usage of our tools. Design creative solutions and suggest new tools and methods to reduce friction in the data flow process, reflecting the needs of your domain.Skills & Experience:Looking for someone who is proficient at explaining complicated processes, requirements, and data pipelines to both technical and non-technical stakeholders, and then presenting this to various levels of stakeholder's seniority. Demonstrated experience in designing processes, frameworks, and best practices for junior teams to drive standardization and uniformity in data manipulation, documentation, and orchestration. Vast experience with multiple data visualization and transformation tools, including preference for DBT, Airflow, Fivetran, and Tableau/PowerBI/Looker. Certified or expert in dbt and its standards. Experience with QAing data pipelines using tools like Monte Carlo or similar. Proficient in documentation using Jira, Confluence, or similar platforms. Expert in SQL and Python, with the ability to upskill teams on best practices. Skilled in manipulating large datasets, combining data from multiple sources to achieve desired results. Working knowledge of design thinking and agile methodologies.

Apply

OR

Share:

Analytics Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.