Analytics Engineer

TechNET IT
London
1 year ago
Applications closed

Related Jobs

View all jobs

Analytics Engineer: Data Architecture & Strategy Lead

Analytics Engineer: Power BI & Cloud Data Transformation

Analytics Engineer & Data Architect — Drive Data Strategy

Data Engineer | Remote

Data Engineer | Remote

Data Engineer | Remote

United Kingdom - London
Posted: 25/07/2024

Salary: £0.00to £500.00 per Day
ID: 34443_BH

Apply

ORAnalytics Engineer | 6-month contract initially | Hybrid role based in London
Our client is on a quest to modernize their data stack and expand their analytics engineering function. They are on the hunt for experienced Analytics Engineers enthusiastic about designing innovative solutions that balance bespoke in-house solutions with external tools, driving data governance, quality, and availability.
Responsibilities:You will bedeveloping robust data models within your domain, observing best practices and frameworks to improve data discoverability, accessibility, manipulation, and reporting. Serving as a data steward and owner of a decentralized data network, ensuring top-tier governance and maintaining comprehensive documentation across your domain's lineage. Partnering closely with the data engineering and ETL teams to translate technical requirements into non-technical outcomes and vice versa. Ensure consistent reporting by aligning stakeholders on definitions of metrics and dimensions within your domain. Drive the success of their self-service program by educating non-technical stakeholders on the usage of our tools. Design creative solutions and suggest new tools and methods to reduce friction in the data flow process, reflecting the needs of your domain.Skills & Experience:Looking for someone who is proficient at explaining complicated processes, requirements, and data pipelines to both technical and non-technical stakeholders, and then presenting this to various levels of stakeholder's seniority. Demonstrated experience in designing processes, frameworks, and best practices for junior teams to drive standardization and uniformity in data manipulation, documentation, and orchestration. Vast experience with multiple data visualization and transformation tools, including preference for DBT, Airflow, Fivetran, and Tableau/PowerBI/Looker. Certified or expert in dbt and its standards. Experience with QAing data pipelines using tools like Monte Carlo or similar. Proficient in documentation using Jira, Confluence, or similar platforms. Expert in SQL and Python, with the ability to upskill teams on best practices. Skilled in manipulating large datasets, combining data from multiple sources to achieve desired results. Working knowledge of design thinking and agile methodologies.

Apply

OR

Share:

Analytics Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.