AI/ML - Data Engineer (NLP/Speech), Siri and Information Intelligence

Apple
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineering Product Owner, Technology, Data Bricks, Microsoft

Data Engineering Product Owner, Technology, Data Bricks, Microsoft

Data Science Practitioner

Data Scientist

Principal Data Scientist and Machine Learning Researcher

Data Strategy Lead

Summary:
Play a part in the next revolution in human-computer interaction. Contribute to a product that is redefining mobile computing. Create groundbreaking technology for large scale systems, natural language, big data, and artificial intelligence. And work with the people who created the intelligent assistant that helps millions of people get things done — just by asking. Join the Siri Response / Text-to-Speech (TTS) team at Apple. Our team is looking for exceptional data engineers passionate about delivering delightful customer experiences with Siri voices. As Data Engineer (NLP/Speech), you'll work on building and maintaining text and speech datasets, processes and workflows for our TTS systems.
Key Qualifications:
5+ years’ industry experience processing large-scale text/speech datasets for ML applicationsStrong expertise in Python, (NoSQL) databases, cloud-based data technologies, and working with large datasets and pipelinesExperience in tooling and streamlining workflows in complex processesHighly-motivated, creative, organized and a strong problem solverOutstanding spoken and written communication skills
Description:
Apple is hiring data engineers for the Siri Response / Text-to-Speech (TTS) team. You'll be working at the frontier of AI, processing massive amounts of speech and text data for our TTS systems. You'll work closely with fellow engineers to gather and integrate new speech and text data into our repositories, transforming raw data into formats usable for TTS model training, and making datasets available to partner teams in Apple to power Siri's voice. Your responsibilities will include: * Collect and centralize data from various sources, working with internal privacy, legal and modeling teams* Build processes and workflows that support data transformation for TTS systems (e.g. audio processing and text annotation), based on the needs and requirements of modeling teams* Provide datasets to partner teams, managing access or usage control* Create dashboard for interactive data exploration* Develop tools and tests to ensure quality and help diagnose issues* Perform analysis on external and internal processes and data to identify opportunities for improvement* Develop prototype ML models utilizing in-house toolkits If this sounds like you, we'd love to hear from you!
Additional Requirements:
* Experience in working with natural language data, lexical resources, corpora, NLP algorithms and tools is a plus* Experience in machine learning, natural language processing, machine translation or text-to-speech is a plus* Knowledge of one or more foreign languages is a plus

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.