Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AI) Machine Learning Research Engineer

London
6 months ago
Applications closed

Related Jobs

View all jobs

Manager, AI Data Engineering (UK Remote)

Manager, AI Data Engineering (UK Remote)

Sr. AI Data Engineer (UK Remote)

Manager, AI Data Engineering (UK Remote)

Sr. AI Data Engineer (UK Remote)

Sr. AI Data Engineer (UK Remote)

Job Title: AI Machine Learning Research Engineer

Duration: 6 Months

Location: Remote - With Branch/clients visit when required, London / Windsor

Rate: £850 - £900 inside umbrella

About the Role:

Join our client's Innovation Team as an AI Machine Learning Research Engineer, where you will play a pivotal role in turning visionary ideas into reality. This position is integral to the technical execution of innovative projects in the energy sector, leveraging your expertise in AI, full-stack development, and cloud architecture. If you are passionate about pioneering technologies and enjoy bridging the gap between theoretical concepts and practical applications, this role is for you.

Key Responsibilities:

POC Development & Prototyping: Create robust prototypes and proof of concepts (POCs) that showcase the value of new ideas, integrating AI with front-end and back-end systems to align with sustainable energy solutions.
AI & Machine Learning Implementation: Design and deploy AI/ML models to extract insights from energy data, optimise systems, and enhance customer experiences.
Full-Stack Development: Develop end-to-end solutions, ensuring seamless integration between components and optimal performance across the technology stack.
Technical Innovation: Utilise advanced technologies, including large language models and predictive analytics, to tackle complex challenges in the energy industry.
Cross-Functional Collaboration: Work alongside Innovation Designers to align technical development with design concepts and business objectives, translating AI capabilities into user-friendly experiences.
Agile Methodology: Apply agile practises to produce high-quality code rapidly and facilitate iterative feedback for continuous improvement.
Cloud and DevOps Implementation: Manage applications in cloud environments (AWS/Azure) and implement CI/CD pipelines to streamline development and deployment.
Design Skills Application: Contribute to user interface and experience design, focusing on AI interactions and data visualisations to create intuitive products.
Knowledge Sharing: Act as a mentor within the Innovation Team, sharing insights on emerging AI technologies and fostering a culture of learning and growth.
Stakeholder Interaction: Collaborate with stakeholders to refine requirements, gather feedback, and validate the technical aspects of innovations, clearly communicating the capabilities of AI solutions.

Required Skills and Experience:

Innovation Background: Experience in an innovation or product team, ideally with exposure to both large organisations and startups.
POC Development: Proven track record of transforming complex ideas into workable prototypes and POCs.
Technical Proficiency: Strong programming skills in various languages and frameworks relevant to project needs.
Emerging Technology Experience: Hands-on experience with advanced technologies such as AI, LLMs, and SLMs.
Cloud and DevOps Understanding: Basic knowledge of cloud services and DevOps principles to support efficient development and deployment processes.
Design Capability: Skills in designing user-friendly interfaces that enhance the user experience of prototypes.
Agile Expertise: Proficiency in agile methodologies, with experience in fast-paced, iterative environments.

Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.