AI) Machine Learning Research Engineer

London
4 weeks ago
Create job alert

Job Title: AI Machine Learning Research Engineer

Duration: 6 Months

Location: Remote - With Branch/clients visit when required, London / Windsor

Rate: £850 - £900 inside umbrella

About the Role:

Join our client's Innovation Team as an AI Machine Learning Research Engineer, where you will play a pivotal role in turning visionary ideas into reality. This position is integral to the technical execution of innovative projects in the energy sector, leveraging your expertise in AI, full-stack development, and cloud architecture. If you are passionate about pioneering technologies and enjoy bridging the gap between theoretical concepts and practical applications, this role is for you.

Key Responsibilities:

POC Development & Prototyping: Create robust prototypes and proof of concepts (POCs) that showcase the value of new ideas, integrating AI with front-end and back-end systems to align with sustainable energy solutions.
AI & Machine Learning Implementation: Design and deploy AI/ML models to extract insights from energy data, optimise systems, and enhance customer experiences.
Full-Stack Development: Develop end-to-end solutions, ensuring seamless integration between components and optimal performance across the technology stack.
Technical Innovation: Utilise advanced technologies, including large language models and predictive analytics, to tackle complex challenges in the energy industry.
Cross-Functional Collaboration: Work alongside Innovation Designers to align technical development with design concepts and business objectives, translating AI capabilities into user-friendly experiences.
Agile Methodology: Apply agile practises to produce high-quality code rapidly and facilitate iterative feedback for continuous improvement.
Cloud and DevOps Implementation: Manage applications in cloud environments (AWS/Azure) and implement CI/CD pipelines to streamline development and deployment.
Design Skills Application: Contribute to user interface and experience design, focusing on AI interactions and data visualisations to create intuitive products.
Knowledge Sharing: Act as a mentor within the Innovation Team, sharing insights on emerging AI technologies and fostering a culture of learning and growth.
Stakeholder Interaction: Collaborate with stakeholders to refine requirements, gather feedback, and validate the technical aspects of innovations, clearly communicating the capabilities of AI solutions.

Required Skills and Experience:

Innovation Background: Experience in an innovation or product team, ideally with exposure to both large organisations and startups.
POC Development: Proven track record of transforming complex ideas into workable prototypes and POCs.
Technical Proficiency: Strong programming skills in various languages and frameworks relevant to project needs.
Emerging Technology Experience: Hands-on experience with advanced technologies such as AI, LLMs, and SLMs.
Cloud and DevOps Understanding: Basic knowledge of cloud services and DevOps principles to support efficient development and deployment processes.
Design Capability: Skills in designing user-friendly interfaces that enhance the user experience of prototypes.
Agile Expertise: Proficiency in agile methodologies, with experience in fast-paced, iterative environments.

Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you

Related Jobs

View all jobs

Data Science Consultant - Customer Data Modelling

Senior Data Scientist

Director of Data Science & Analytics

Data Scientist (KTP Associate)

▷ 3 Days Left: Data Scientist, Data Intelligence,Professional Services GCR

Senior Data Scientist (Generative AI) - RELOCATION TO ABU DHABI

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.