AI Data Scientist: Applied Intelligence & Delivery

FactTrace
Cambridge
2 days ago
Create job alert
About FactTrace.ai

FactTrace.ai builds AI systems that bring clarity, integrity, and evidence to complex data.


Our focus is not just intelligence, but trust — ensuring that AI outputs can be understood, validated, and relied upon in real-world decision-making.


After a period of incubation and research in 2025, FactTrace is now operating as a trading company and going public in January 2026. This next phase is about delivery, real-world data, and outcomes under scrutiny.


The Role

We are looking for exceptional AI Data Scientists based in the UK who want to work side by side with engineers, validation leads, and the founder, turning advanced models into systems that run reliably in the real world.


This is a fully office-based role in Cambridge. We believe this phase of the company benefits from being in the same room: fast iteration, shared context, and deep collaboration.


This is not a pure research role.


You will be part of a small, senior technical team focused on shipping, validating, and improving models under real constraints.


What You’ll Do

  • Design and develop models for complex, real-world datasets
  • Translate analytical ideas into deliverable, repeatable outputs
  • Work within an engineering pipeline to ensure models can run reliably
  • Collaborate closely with validation leads to test performance on real-world data
  • Iterate based on feedback, results, and observed behaviour
  • Clearly document assumptions, limits, and performance
  • Participate in technical reviews focused on learning and improvement

What We’re Looking For

  • PhD, MPhil, or equivalent experience in Computer Science, Engineering, Mathematics, Physics, or a related quantitative field
  • Strong foundation in Python and data science tooling
  • Solid understanding of machine learning concepts and evaluation
  • Comfort working with messy, real-world data
  • Ability to move from abstract reasoning to concrete implementation
  • A delivery mindset: clear outputs, clear assumptions, clear timelines

Candidates do not need to come from a specific university — we welcome applications from across the UK.


Nice to Have (Not Required)

  • Experience with deep learning, embeddings, or representation learning
  • Familiarity with PyTorch, TensorFlow, or similar frameworks
  • Interest in robustness, evaluation, or data integrity
  • Experience taking work from experimentation into production

Working Style & Location

  • Office-based in Cambridge
  • Close collaboration, fast feedback, shared ownership
  • Suited to people who enjoy building together, in person

Commitment & Growth

  • Full-time role
  • Start date: as soon as possible
  • Competitive salary and early-stage equity participation
  • Designed for long-term growth within the core technical team

How to Apply

Please send:



  • Your CV
  • Your GitHub
  • A short note (a few paragraphs is enough) explaining:
  • What draws you to applied data science
  • Why you want to work hands-on, in person, on real-world systems

📩



#J-18808-Ljbffr

Related Jobs

View all jobs

Principal Data Scientist

Data Scientist - Geospatial & Transport Analytics (6 Month FTC) (1 Braham Street, London, United Kingdom)

Principal Data Scientist

Principal Data Scientist

Computer Vision AI Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.