Accounts Receivable / Data Analyst (6-Month FTC)

Netbox Recruitment
Dover
1 week ago
Create job alert

Accounts Receivable / Data Analyst (6-Month FTC)
Salary: £30,000 - £35,000 FTE | Location: East Kent (Hybrid)

We are representing this established international manufacturer in sourcing for an Accounts Receivable / Data Analyst to join their finance team on a 6-month fixed-term contract (with strong potential to extend). This hybrid role combines high-volume AR management with data cleansing, analysis, and data migration work. You'll support the day-to-day management of the sales ledger, process improvements and automation initiatives across an international remit.

Key Skills & Experience

Accounts Receivable or Collections experience
Strong analytical and data management skills with keen attention to detail
Comfortable working with large datasets
ERP/SAP knowledge desirable
Proactive and organised approachSalary on offer between £30,000 - £35,000 (full time equivalent). Hybrid working with 2 days in office and 3 days remote #3028

Related Jobs

View all jobs

ERP Data Analyst (Finance)

2 x Data Analyst - Local Authority

ERP Data Analyst (Finance)

Client Data Governance and Integrity Lead

Delegated Authority Data Governance & Bordereaux Manager

Finance Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.