National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

[15h Left] Data Scientist, Ad Fraud Detection, Traffic Quality ML...

Amazon
London
1 day ago
Create job alert

Data Scientist, Ad Fraud Detection, Traffic Quality ML

Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. One of the key focus areas is Traffic Quality where we endeavour to identify non-human and invalid traffic within programmatic ad sources, and weed them out to ensure a high quality advertising marketplace. We do this by building machine learning and optimization algorithms that operate at scale, and leverage nuanced features about user, context, and creative engagement to determine the validity of traffic. The challenge is to stay one step ahead by investing in deep analytics and developing new algorithms that address emergent attack vectors in a structured and scalable fashion. We are committed to building a long-term traffic quality solution that encompasses all Amazon advertising channels and provides industry leading traffic filtering leveraging GenAI and state-of-the-art deep learning techniques. Our systems preserve advertiser trust and saves them hundreds of millions of dollars of wasted spend.

A Data Scientist is responsible for delivering deep data-driven analyses with insights that drive the business. They would use a combination of analytics, data visualization and machine learning to identify gaps in current solutions as well as prototype new algorithms that close the gaps. The ideal candidate should have strong experience in dive deep analytics and data visualization, thorough knowledge of statistical techniques and strong breadth in machine learning. The candidate should also have good programming and design skills to implement machine learnings algorithms in practice on massive unstructured datasets.

BASIC QUALIFICATIONS

  • 3+ years of data scientist experience
  • 4+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience
  • 3+ years of machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience
  • Experience applying theoretical models in an applied environment

    PREFERRED QUALIFICATIONS

  • Experience with data scripting languages (e.g. SQL, Python, R etc.) or statistical/mathematical software (e.g. R, SAS, or Matlab)
  • Experience with big data: processing, filtering, and presenting large quantities (100K to Millions of rows) of data
  • Experience in a ML or data scientist role with a large technology company
  • Experience in Computational Advertising

    Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

    Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability or other legally protected status.

    #J-18808-Ljbffr

Related Jobs

View all jobs

(15h Left) Data Scientist (London)...

15h Left! Senior Data Scientist (R, MLOps)...

[15h Left] Senior Data Scientist - Tax, Technology and Transformation...

▷ [15h Left] Head of Data Science (hands on) – FinTech...

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Data Science Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

The ability to communicate clearly is now just as important as knowing how to build a predictive model or fine-tune a neural network. In fact, many UK data science job interviews are now designed to test your ability to explain your work to non-technical audiences—not just your technical competence. Whether you’re applying for your first data science role or moving into a lead or consultancy position, this guide will show you how to structure your presentation, simplify technical content, design effective visuals, and confidently answer stakeholder questions.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.